
Robust File Transfer

Abstract

Robust File Transfer (RFT) is a file-transfer protocol on top of UDP. It is connection-oriented,

stream-parallel and stateful, supporting connection migration based on connection IDs similar to

QUIC. RFT provides point-to-point operation between a client and a server, enabling IP address

migration, flow control, congestion control, and partial or resumed file transfers using offsets

and lengths.

Workgroup:

Internet-Draft:

Published:

Intended Status:

Expires:

Authors:

TUM Protocol Design Meta Group 23

draft-group23-rft-00

13 November 2024

Informational

17 May 2025

S. A. Gierens, Ed.

Technical University of Munich

N. Stangl, Ed.

Technical University of Munich

J. Pfannschmidt, Ed.

Technical University of Munich

D. Rentz, Ed.

Technical University of Munich

Y. E. Nacar, Ed.

Technical University of Munich

I. Gustafsson, Ed.

Technical University of Munich

Status of This Memo

This Internet-Draft is submitted in full conformance with the provisions of BCP 78 and BCP 79.

Internet-Drafts are working documents of the Internet Engineering Task Force (IETF). Note that

other groups may also distribute working documents as Internet-Drafts. The list of current

Internet-Drafts is at .

Internet-Drafts are draft documents valid for a maximum of six months and may be updated,

replaced, or obsoleted by other documents at any time. It is inappropriate to use Internet-Drafts

as reference material or to cite them other than as "work in progress."

This Internet-Draft will expire on 17 May 2025.

https://datatracker.ietf.org/drafts/current/

Copyright Notice

Copyright (c) 2024 IETF Trust and the persons identified as the document authors. All rights

reserved.

This document is subject to BCP 78 and the IETF Trust's Legal Provisions Relating to IETF

Documents () in effect on the date of publication of this

document. Please review these documents carefully, as they describe your rights and restrictions

https://trustee.ietf.org/license-info

Gierens, et al. Expires 17 May 2025 Page 1

https://datatracker.ietf.org/drafts/current/
https://trustee.ietf.org/license-info

with respect to this document. Code Components extracted from this document must include

Revised BSD License text as described in Section 4.e of the Trust Legal Provisions and are

provided without warranty as described in the Revised BSD License.

Table of Contents

1. Introduction

1.1. Keywords

1.2. Terms

1.3. Notation

2. Overview

3. Packet

3.1. Version

3.2. Connection ID

3.3. Packet ID

3.4. Packet Checksum

3.5. Payload

4. Communication Structure

4.1. Frames

4.2. Streams

5. Connection

5.1. Establishment

5.1.1. Connection ID Negotiation

5.1.2. Unknown Connection ID

5.2. Termination

5.2.1. Tear Down

5.2.2. Timeout

5.3. Migration

5.4. Resumption

6. Robustness

6.1. In-Order Delivery

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 2

6.2. Acknowledgements

6.3. Retransmission

6.3.1. Retransmission Timeout

6.3.2. Fast Retransmission

6.4. Congestion Control

6.4.1. Slow Start

6.4.2. Congestion Avoidance

6.5. Flow Control

6.6. Checksumming

7. File Transfer

7.1. Read

7.2. Write

7.3. Multiple Transfers

7.4. Recovery

7.4.1. Read Recovery

7.4.2. Write Recovery

8. Further Commands

8.1. Checksum

8.2. Stat

8.3. List

9. Wire Format

9.1. Numbers

9.2. Arrays

9.2.1. Bytes

9.2.2. String

9.2.3. Path

9.3. Packet Format {#packet format}

9.4. Frame Format

9.4.1. Ack Frame

9.4.2. Exit Frame

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 3

9.4.3. Connection ID Change Frame

9.4.4. Flow Control Frame

9.4.5. Answer Frame

9.4.6. Error Frame

9.4.7. Data Frame

9.4.8. Read Frame

9.4.9. Write Frame

9.4.10. Checksum Frame

9.4.11. Stat Frame

9.4.12. List Frame

10. Normative References

Authors' Addresses

1. Introduction

The Protocol Design WG is tasked with standardizing an Application Protocol for a robust file

transfer protocol, RFT. This protocol is intended to provide point-to-point operation between a

client and a server built upon UDP . It supports connection migration based on

connection IDs, in spirit similar to QUIC , although a bit easier.

RFT is based on UDP, connection-oriented, stateful and uses streams for each file transfer

allowing for parallelization. A point-to-point connection supports IP address migration, flow

control, congestion control and allows to transfers of a specific length and offset, which can be

useful to resume interrupted transfers or partial transfers. The protocol guarantees in-order

delivery for all packets belonging to a stream. There is no such guarantee for messages belonging

to different streams.

RFT messages always consist of a single Packet Header and zero or multiple Frames appended

continuously on the wire after the packet header without padding. Frames are either data

frames, error frames or various types of control frames used for the connection initialization and

negotiation, flow control, congestion control, acknowledgement or handling of commands.

[RFC0768]

[RFC9000]

1.1. Keywords

The key words " ", " ", " ", " ", " ", " ", "

", " ", " ", " ", and " " in this document are to

be interpreted as described in BCP 14 when, and only when, they appear in

all capitals, as shown here.

MUST MUST NOT REQUIRED SHALL SHALL NOT SHOULD SHOULD

NOT RECOMMENDED NOT RECOMMENDED MAY OPTIONAL

[RFC2119] [RFC8174]

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 4

1.2. Terms

The following terms are used throughout this document:

Client:

The endpoint of a connection that initiated it and issues commands over it.

Server:

The endpoint of a connection that listens for and accepts connections from clients and

answers their commands.

Connection:

A communication channel between a client and server identified by a single connection ID

unique on both ends.

Packet:

An RFT datagram send as UDP SDU over a connection containing zero or multiple frames.

Frame:

A typed and sized information unit making up (possible with others) the payload of an RFT

packet and usually belonging to a particular stream.

Empty Packet:

A packet without frames.

Command:

A typed request initiated by the client to the server, e.g. to initiate a file transfer, usually

opening up a new stream.

Stream:

A logical channel within a connection that carries frames encapsulating a particular request

i.e. file transfer.

Sender:

The endpoint sending a packet or frame.

Receiver:

The endpoint receiving a packet or frame.

1.3. Notation

This document defines U4, U8, U16, U32, U64 as unsigned 4-, 8-, 16-, 32-, or 64-bit integers. A

string is a UTF-8 encoded zero-terminated string.

Messages are represented in a C struct-like notation. They may be annotated by C-style

comments. All members are laid out continuously on wire, any padding will be made explicit.

Constant values are assigned with a "=".

[RFC3629]

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 5

The only scalar types are integer denoted with "U" for unsigned and "I" for signed integers.

Strings are a composite type consisting of the size as "U16" followed by ASCII-characters. Padding

is made explicit via the field name "Padding" and constant values are assigned with a "=".

To exemplify a actual message example we use the following notation omitting type names and

again making use of "=":

To visualize protocol runs we use the following sequence diagram notation:

The individual parts of the packets are enclosed by brackets and only the relevant values are

shown. First we always have the RFT packet header, followed by zero or multiple frames. See

below for more details on the packet structure.

We use the following abbreviations mostly in diagrams:

Abbreviation Meaning

VERS Version

Figure 1: Message format notation

StructName1 (Length) {

 TypeName1 FieldName1,

 TypeName2 FieldName2 = 0x123,

 TypeName3[4] FieldName3,

 String FieldName4,

 StructName2 FieldName5,

}

Figure 2: Filled message format notation

StructName1 {

 FieldName1 = 0,

 FieldName2 = 0x123,

 FieldName3 = [1, 2, 3, 4],

 FieldName4 = "Hello",

 FieldName5 = { ... },

 Padding = 0,

}

Figure 3: Sequence diagram notation

Client Server

 | |

 |------[CID:1337, PID: 2][ACK, PID:3][FLOW, SIZE:1000]----->|

 | |

 v v

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 6

Abbreviation Meaning

CID Connection ID

PID Packet ID

CRC Packet checksum

SID Stream ID

CMD Command frame

DATA Data frame

ERR Error frame

ANSW Answer frame

ACK Acknowledgement frame

FLOW Flow control frame

CHCID Connection ID change frame

EXIT Exit frame

READ Read command

WRITE Write command

CHK Checksum command

LIST List command

STAT Stat command

LEN Length

OFF Offset

WIN Flow window size

OLD Old connection ID

NEW New connection ID

MSG Message

Table 1: Common abbreviations.

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 7

2. Overview

This section gives a rough overview over the protocol and provides basic information necessary

to follow the detailed description in the following sections.

The RFT protocol is a simple layer 7 protocol for Robust File Transfer. It sits on-top of layer 4 with

a single RFT packet send as a UDP SDU. The packet structure is shown in the following figure:

The header contains a version field (VER) for evolvability, as connection ID (CID) uniquely

identifying the connection on both ends, a packet ID (PID) identifying the packet within the

connection and a cyclic-redundancy-check (CRC) checksum to validate the packet integrity.

After the header follows the payload which holds one or more RFT frames inspired by .

These serve both for data transfer as well as any additional logic besides version matching,

connection identification, and packet integrity validation. The most important types are

AckFrames for acknowledging packets based on their packet ID (PID), command frames to issue

commands on the server, and DataFrames to transport data for the commands to read or write a

file. File data in the ReadFrame and WriteFrame as well as in DataFrames is indexed by byte

offset and length making both transfer recovery and parallel transfers even of different parts of

the same file possible. Each transfer is encapsulated in a stream identified by a stream ID (SID)

allowing for multiplexing multiple transfers over a single connection.

The next sections provides detailed information about connection-related topics, e.g.

establishment, streams, reliability, congestion control and more. The sections after that explain

the message format and framing in more detail, and lists all the different frame and command

types.

Figure 4: General packet structure

 +-----------+------------------+-------+

 | ACK Frame | Data Frame | ... |

+------+-----+-----+-----+-----------+------------------+-------+

| VERS | CID | PID | CRC | |

+------+-----+-----+-----+ Payload (zero/one/many frames) |

| Header | |

+------------------------+--------------------------------------+

| RFT Packet |

+---+

| UDP SDU |

+---+

[RFC9000]

3. Packet

The RFT packet is the basic transport unit in the protocol. A single packet takes up the entire UDP

payload and is composed of a header and a its own payload. The packet header is structured as

follows:

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 8

Figure 5: Packet header wire format

PacketHeader (64) {

 U8 Version = 1,

 U32 ConnectionId,

 U32 PacketId,

 U24 PacketChecksum,

}

3.1. Version

To ensure evolvability the packet header contains a 8-bit version field. Most network protocols

never hit a two-digit version number, therefore 8 bit is deemed sufficient.

The version field identifies the protocol version used by the sender of the packet. Upon

connection establishment server validate that the clients version is compatible with its

own before responding to a handshake request. A peer change the protocol version

during the lifetime of the connection, and peers re-validate the version at any time.

As long as RFT is in draft stage with rapid breaking changes the peers strictly match the

version number.

MUST

SHALL NOT

MAY

SHOULD

3.2. Connection ID

The 32-bit connection ID uniquely identifies the connection on both ends. 32 bit allows for up to

roughly 4 billion connections per UDP port. While this is not as extensive as QUIC , it is

deemed sufficient for a file transfer protocol. Deployments that require more client connections

on a single server can obviously run multiple protocol instances on different server ports.

The connection ID is negotiated during connection establishment, which is discussed in more

detail in Section 5.1. The connection ID furthermore allows for connection migration, which is

discussed in Section 5.3.

[RFC9000]

3.3. Packet ID

The 32-bit packet ID uniquely identifies a packet in one direction of the connection. Each peer

maintains a counter starting at 1 that is incremented for each packet they send to the other side.

The uniqueness only holds up to wrap-around, and implementations are to handle

this properly. With a 32-bit ID and up to 1500 Byte packets, this means roughly 6 TByte of data

can be transferred before a wrap-around occurs. Even with a state-of-the-art 1 Tbit/s link, this

would take 48 seconds which is deemed sufficient in comparison to timeouts and other protocol

mechanisms.

REQUIRED

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 9

Figure 6: Sequence diagram of packet ID incrementation

Client Server

PID| |PID

---| |---

 1 |----------------------[CID:0, PID:1]---------------------->|

 |<---------------------[CID:1, PID:1]-----------------------| 1

 2 |-------------------[CID:1, PID:2][...]-------------------->|

 |<------------------[CID:1, PID:2][...]---------------------| 2

 3 |-------------------[CID:1, PID:3][...]-------------------->|

 |<------------------[CID:1, PID:3][...]---------------------| 3

 |<------------------[CID:1, PID:4][...]---------------------| 4

 |<------------------[CID:1, PID:5][...]---------------------| 5

 4 |-------------------[CID:1, PID:4][...]-------------------->|

 | |

 v v

3.4. Packet Checksum

The packet checksum is a redundancy check to validate the integrity of packet. It contains the

first 24-bit of the 32-bit cyclic redundancy check (CRC32) of the entire packet, with the

packet checksum itself set to 0.

The length of the checksum is chosen for alignment reasons. Since CRC32 has a good entropy,

"chopping off" 8 bit should not impede its effectiveness, and also in general make it a suitable

choice.

[RFC3385]

3.5. Payload

The payload has a variable size but be chosen such, that it does not produce IP packet

fragmentation. So in a typical 1500 Byte MTU network with a minimal 20 Byte IP and 8 Byte UDP

header, followed by the 64 Byte RFT header, up to 1408 Bytes can be used for the payload.

The payload consists of zero, one, or multiple frames, that build a second level of packetization in

the protocol. The come in different flavors allowing for flexible state exchange, and also provide

the means for multistreaming, both discussed in detail in the following section.

SHOULD

4. Communication Structure

TCP's rigid header structure has made it difficult to extend the protocol to more modern

requirements. RFT as a file transfer protocol may be more specialized but still requires flexibility

to fit different scenarios. For the transfer of a single large file not much is needed, but

synchronizing directories consisting of many small files calls for parallelization which can

introduce new challenges like head-of-line blocking or state complexity.

In general, the ideal way to handle the transfers depend on the specific nature of the application.

Therefore RFT tries to provide a flexible framework for issuing file transfers, related actions and

handling their responses. The application layer can then decide how to use these mechanisms

and how much parallelization and complexity it requires.

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 10

RFT achieves said flexibility by adopting two structural ideas from QUIC , frames and

streams. How these are used in RFT is discussed in the following subsections.

[RFC9000]

4.1. Frames

Frames subdivide packets into the atomic units of state exchange of the protocol. All frames have

in common that they start with an 8 bit type ID. The ExitFrame for closing the connection is the

only frame, that consists of nothing but the type ID 1:

For frames with only header fields the length is implicitly given. Frames with variably sized path,

message, or payload fields have a length field right in front of them. File data for example is

carried in DataFrames:

The order of frames in a packet is only relevant within the same stream, the concept discussed in

the following.

Figure 7: Exit frame wire format

ExitFrame (8) {

 U8 TypeId = 1,

}

Figure 8: Data frame wire format

DataFrame (72 + len(Payload)) {

 U8 TypeId = 6,

 U16 StreamId,

 U48 Offset,

 Bytes Payload,

}

4.2. Streams

Streams are logical channels within the connection encapsulating the frames belonging to a

particular operation. This enables the parallel execution of multiple file transfers for example.

Such frames carry a 16-bit stream ID (SID) to identify the stream they belong to. At any time there

CANNOT be more than one stream with the same ID within the connection. Stream IDs

however be reused after completion of a previous stream with that ID.

A stream is created by the client when sending a command frame to the server. The stream ID is

not negotiated but chosen by the client and send to the server in the command frame, for

example in the ReadFrame:

MAY

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 11

The client is therefore solely responsible for ensuring the time-local uniqueness of the stream ID.

The server answer commands with the same stream ID and in the context of the same

stream.

Streams are closed when either the requested operation is completed, via an AnswerFrame or an

empty DataFrame which signals EOF for transfers, or with an ErrorFrame in conflict cases.

Frames for connection global control traffic like AckFrames or FlowFrames do not carry a stream

ID and are implicitly associated to the virtual stream 0. This stream ID be used for any

other purpose.

The following sequence diagram shows the parallel execution of a read and stat command using

two different streams (SID 1 and 2) on the same connection, ignoring acknowledgements:

Both streams are terminated in the same packet, one with the EOF (empty DataFrame) and the

other with an AnswerFrame.

In contrast the following example shows how the server returns an error in case of a duplicate

stream ID:

Figure 9: Read frame wire format

ReadFrame (160 + len(Path)) {

 U8 TypeId = 7,

 U16 StreamId,

 U7 Reserved = 0,

 Bool ValidateChecksum,

 U48 Offset,

 U48 Length,

 U32 Checksum,

 String Path,

}

MUST

MUST NOT

Figure 10: Simplified sequence diagram of read and stat commands executed in parallel, ignoring

acknowledgements. Note the different stream IDs.

Client Server

 | |

 |--------[CID:1, PID:5][READ, SID:1, PATH:hello.md]-------->|

 | |

 |<----------[CID:1, PID:4][DATA, SID:1, LEN:1000]-----------|

 |<----------[CID:1, PID:5][DATA, SID:1, LEN:1000]-----------|

 | |

 |---------[CID:1, PID:6][STAT, SID:2, PATH:test.md]-------->|

 | |

 |<----[CID:1, PID:6][DATA, SID:1, LEN:100][EOF, SID:1]------|

 | [ANSWER, SID:2, stat data...] |

 | |

 v v

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 12

Figure 11: Simplified sequence diagram of an error due to duplicate stream ID

Client Server

 | |

 |--------[CID:1, PID:5][READ, SID:1, PATH:hello.md]-------->|

 | |

 |<----------[CID:1, PID:4][DATA, SID:1, LEN:1000]-----------|

 |<----------[CID:1, PID:5][DATA, SID:1, LEN:1000]-----------|

 | |

 |---------[CID:1, PID:6][STAT, SID:1, PATH:test.md]-------->|

 | |

 |<----[CID:1, PID:6][ERROR, SID:1, MSG:"Duplicate SID"]-----|

 | |

 v v

5. Connection

The protocol is connection-based. Connections are identified a singular connection ID (CID)

unique on both sides.

5.1. Establishment

The connection establishment is and via a two-way handshake and is initiated by the client by

sending a packet with connection ID 0. The server responds with the UDP packet having reversed

IP addresses and ports, containing an RFT packet with the connection ID chosen by the server.

The server knows all IDs of established connections and must make the new one is unique.

Figure 12: Sequence diagram of simple connection establishment

Client Server

 | |

 |----------------------[CID:0, PID:1]---------------------->|

 | |

 |<---------------[CID:1, PID:1][ACK, PID:1]-----------------|

 | |

 v v

5.1.1. Connection ID Negotiation

This simple connection establishment is limited to a single handshake at a time per UDP source

port. If the client wishes to establish multiple over a single port it can attach a

ConnectionIdChangeFrame with a proposed connection ID for the new one (NEW) and 0 for the

old one (OLD). The server acknowledges this and sends back the handshake response to that

connection ID:

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 13

In case the proposal is already used for another connection attaches another

ConnectionIdChangeFrame (CHCID) with the new unique connection ID chosen by the server.

Figure 13: Sequence diagram of successful connection ID proposal

Client Server

 | |

 |-----------[CID:0, PID:1][CHCID, OLD:0, NEW:3]------------>|

 | |

 |<---------------[CID:3, PID:1][ACK, PID:1]-----------------|

 | |

 v v

Figure 14: Sequence diagram of unsuccessful connection ID proposal

Client Server

 | |

 |-----------[CID:0, PID:1][CHCID, OLD:0, NEW:3]------------>|

 | |

 |<-----[CID:3, PID:1][ACK, PID:1][CHCID, OLD:3, NEW:9]------|

 | |

 |-----------------[CID:9, PID:2][ACK, PID:1]--------------->|

 | |

 v v

5.1.2. Unknown Connection ID

When a peer receives a packet for an unknown connection ID it simply ignore it.SHOULD

5.2. Termination

A connection can either be intentionally closed or timeout.

5.2.1. Tear Down

If a peer wishes to close the connection it simply sends a Exit frame.

Figure 15: Graceful connection tear-down

Client Server

 | |

 |------------------[CID:5, PID:125][EXIT]------------------>|

 | |

 v v

5.2.2. Timeout

If no packets were received for 5 minutes the connection is considered dead and the server

 close it. Peers send empty packets (i.e. packets without frames) to keep the

connection alive beyond timeouts.

SHOULD MAY

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 14

5.3. Migration

A connection is uniquely identified on both ends by the connection ID. As soon as a peer receives

a packet for this connection ID from a different IP-address port pair, it must change its internal

mapping and send all subsequent packets to the new address. Any packets lost in the meantime

are subjects to retransmission. If a peer has nothing to send, but wishes to explicitly inform the

other end of a migration, the peer simply send an empty packet (thus a packet without

frames).

MAY

5.4. Resumption

RFT does not explicitly support connection recovery, but allows for resuming file transfers by the

means of partial reads and writes via the corresponding offset and length fields in the Read- and

WriteFrames.

6. Robustness

The protocol has multiple mechanisms to ensure transmissions are complete, in-order and

integrity is maintained, while not overwhelming the receiver or the network. It takes inspiration

from both QUIC and TCP .[RFC9000] [RFC0768]

6.1. In-Order Delivery

The is a monotonically increasing counter for the packets send by a peer. It

thus allows the receiving side to determine the order in which packets were sent out. Streams do

not have a separate ordering mechanism, so implementations are to process frames

only after all previous packets and thus frames have been completely handled. An

implementation be able to buffer packets for a short time within limits of a timeout to

counteract reordering that might have occurred in the network before requesting

retransmissions.

Packet ID (Section 3.3)

REQUIRED

SHOULD

6.2. Acknowledgements

To ensure completeness the receiver acknowledges packets via AckFrames:

It contains the last consecutively received packet ID and thus acknowledges all packets up to that

point cumulatively:

Figure 16: Acknowledgement frame wire format

AckFrame (40) {

 U8 TypeId = 0,

 U32 PacketId,

}

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 15

Empty packets or those with only an AckFrame do NOT NEED to be acknowledged to prevent an

acknowledgment loop.

Figure 17: Example sequence diagram of cumulative acknowledgement

Client Server

 | |

 |<------[CID:3, PID:10][DATA, SID:2, OFF:0, LEN:1000]-------|

 |<-----[CID:3, PID:11][DATA, SID:2, OFF:1000, LEN:1000]-----|

 |<-----[CID:3, PID:12][DATA, SID:2, OFF:2000, LEN:1000]-----|

 | |

 |----------------[CID:3, PID:4][ACK, PID:12]--------------->|

 | |

 v v

6.3. Retransmission

There are two ways retransmissions are triggered.

6.3.1. Retransmission Timeout

If sender does not receive an AckFrame for a packet or a later one within the retransmission

timeout (RTO) of 1 second a normal retransmission (RT) is triggered:

Figure 18: Example sequence diagram of retransmission (RT)

Client Server

 | |

 | X---[CID:3, PID:10][DATA, SID:2, OFF:0, LEN:1000]-------| 0s

 | X--[CID:3, PID:11][DATA, SID:2, OFF:1000, LEN:1000]-----|

 |<-----[CID:3, PID:12][DATA, SID:2, OFF:2000, LEN:1000]-----|

 |<-----[CID:3, PID:13][DATA, SID:2, OFF:3000, LEN:1000]-----|

 |<-----[CID:3, PID:14][DATA, SID:2, OFF:4000, LEN:1000]-----| RTO

 | |

 |<------[CID:3, PID:10][DATA, SID:2, OFF:0, LEN:1000]-------| RT

 |<-----[CID:3, PID:11][DATA, SID:2, OFF:1000, LEN:1000]-----|

 |<-----[CID:3, PID:12][DATA, SID:2, OFF:2000, LEN:1000]-----|

 | |

 |----------------[CID:3, PID:4][ACK, PID:12]--------------->| ACK

 | ... |

 | |

 v v

6.3.2. Fast Retransmission

The receiver can also request a fast retransmission (FRT) by sending a duplicate AckFrame

(DACK) for the last packet it received:

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 16

Figure 19: Example sequence diagram of fast retransmission (FRT)

Client Server

 | |

 |<------[CID:3, PID:10][DATA, SID:2, OFF:0, LEN:1000]-------| 0s

 | X--[CID:3, PID:11][DATA, SID:2, OFF:1000, LEN:1000]-----| LOSS

 | X--[CID:3, PID:12][DATA, SID:2, OFF:2000, LEN:1000]-----|

 |<-----[CID:3, PID:13][DATA, SID:2, OFF:3000, LEN:1000]-----|

 | |

 |---------[CID:3, PID:4][ACK, PID:10][ACK, PID:10]--------->| DACK

 | |

 |<------[CID:3, PID:10][DATA, SID:2, OFF:1000, LEN:1000]----| FRT

 |<------[CID:3, PID:11][DATA, SID:2, OFF:2000, LEN:1000]----|

 | ... |

 | |

 v v

6.4. Congestion Control

Congestion control is inspired by TCP's AIMD . A congestion window (CWND) limits the

amount of bytes in-flight. The window scaling goes through two phases:

[RFC0768]

6.4.1. Slow Start

The congestion window starts at 1 and is updated for each packet containing an AckFrame as

"CWND_NEW = min(2 * CWND, FWND)" with FWND being the window indicated by flow control,

and ends once the slow start threshold is reached.

6.4.2. Congestion Avoidance

After the slow start the AIMD (additive increase, multiplicative decrease) algorithm is used. The

congestion window is increased by one for each acknowledged packet. In case a retransmission

is necessary congestion is assumed and the congestion window is halved and avoidance

continues from there. A timeout causes a reset of the congestion window to one and continues

with a slow start where the threshold set to half the number of packets in-flight.

6.5. Flow Control

To avoid overwhelming the receiver it indicates its available receive buffer size for flow window

(FWND) via FlowControl frames:

Figure 20: Flow control frame wire format

FlowControl (40) {

 U8 TypeId = 3,

 U32 WindowSize,

}

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 17

The window size is the number of bytes left in the receive buffer. When a sender receives this

frame it exceed the indicated limit. The following example shows how the peer

 react:

MUST NOT

SHOULD

 Client Server

 | |

FWND | |

---- | |

4500 |<------[CID:3, PID:10][DATA, SID:2, OFF:0, LEN:1000]-------|

3500 |<-----[CID:3, PID:11][DATA, SID:2, OFF:1000, LEN:1000]-----|

2500 |<-----[CID:3, PID:12][DATA, SID:2, OFF:2000, LEN:1000]-----|

1500 |<-----[CID:3, PID:13][DATA, SID:2, OFF:3000, LEN:1000]-----|

 | |

 |--------[CID:3, PID:4][ACK, PID:13][FLOW, WND:1500]------->|

 | |

1000 |<-----[CID:3, PID:14][DATA, SID:2, OFF:4000, LEN:500]------|

 500 |<-----[CID:3, PID:15][DATA, SID:2, OFF:4500, LEN:500]------|

 | ... |

 | |

 v v

6.6. Checksumming

For the integrity validation of the transmission the partial CRC32 checksum in the packet header

is used. Before processing a packet any further the receiver verify that the checksum

calculated over the remaining packet matches the one in the header. If it does not the packet

 be discarded as not even the connection or packet IDs that are required to issue a fast

retransmission can be trusted. The receiver has to wait for a timeout to trigger retransmission on

the sender side.

MUST

MUST

7. File Transfer

File transfers in either direction are initiated by the client via the respective command (read or

write) frames send on a new stream. Following that data and acknowledgement frames are

exchanged until the transfer is complete, indicated by an empty end-of-file (EOF) data frame.

Both read and write frames indicate the path of the file together with the offset and length to be

transferred. An offset of 0 indicates starting at the beginning of the file, a length of 0 indicates

transferring everything from the offset up to the end of the file.

7.1. Read

To read a file from the server the client sends a ReadFrame:

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 18

In case of reading an entire file the frame could look like this:

The following sequence diagram puts such frame into context (Note that we omit fields that are

not relevant for the example):

Figure 21: Read frame wire format

ReadFrame (160 + len(Path)) {

 U8 TypeId = 7,

 U16 StreamId,

 U7 Reserved = 0,

 Bool ValidateChecksum,

 U48 Offset,

 U48 Length,

 U32 Checksum,

 String Path,

}

Figure 22: Example read frame

ReadFrame {

 TypeId = 7,

 StreamId = 1,

 Reserved = 0,

 ValidateChecksum = false,

 Offset = 0,

 Length = 0,

 Checksum = 0,

 Path = "./example/README.md",

}

Figure 23: Sequence diagram for an example file read

Client Server

| |

|----[CID:3, PID:4][READ, SID:5, OFF:0, LEN:0, PATH:readme.md]--->|

| |

|<---[CID:3, PID:10][ACK, PID:4][DATA, SID:5, OFF:0, LEN:1000]----|

|<--------[CID:3, PID:11][DATA, SID:5, OFF:1000, LEN:1000]--------|

|<--------[CID:3, PID:12][DATA, SID:5, OFF:2000, LEN:1000]--------|

| |

|-------------------[CID:3, PID:5][ACK, PID:12]------------------>|

| |

|<--------[CID:3, PID:13][DATA, SID:5, OFF:3000, LEN:1000]--------|

|<--------[CID:3, PID:14][DATA, SID:5, OFF:4000, LEN:177]---------|

| [DATA, SID:5, OFF:4178, LEN:0] |

| |

|------------------[CID:3, PID:6][ACK, PID:14]------------------->|

| |

v v

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 19

Aside from the already discussed fields the ReadFrame also contains a boolean

ValidateChecksum flag together with the optional Checksum field. These allow the client to

ensure that the already read portion is still the same before continuing to read it. When the client

sets the ValidateChecksum flag to true, it provide the CRC32 checksum of the already read

portion and set the offset to the byte after that part. The server then validate that the

checksum matches for the file on its end and continue reading if it does. If the checksum does not

match the server back an ErrorFrame with a message "Checksum mismatch".

MUST

MUST

MUST

7.2. Write

To write a file on the server the client sends a WriteFrame:

In case of writing a file without specifying its size ahead of time the frame could look like this:

The following sequence diagram puts such frame into context (Note that we omit fields that are

not relevant for the example):

Figure 24: Example write frame

WriteFrame (120 + len(Path)) {

 U8 TypeId = 8,

 U16 StreamId,

 U48 Offset,

 U48 Length,

 String Path,

}

Figure 25: Example write frame

WriteFrame {

 TypeId = 8,

 StreamId = 1,

 Offset = 0,

 Length = 0,

 Path = "./example/README.md",

}

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 20

WriteFrames do not contain a checksum field that requires any special handling.

Figure 26: Sequence diagram for an example file write

Client Server

| |

|---[CID:3, PID:4][WRITE, SID:5, OFF:0, LEN:0, PATH:readme.md]--->|

| [DATA, SID:5, OFF:0, LEN:1000] |

|---------[CID:3, PID:5][DATA, SID:5, OFF:1000, LEN:1000]-------->|

|---------[CID:3, PID:6][DATA, SID:5, OFF:2000, LEN:1000]-------->|

| |

|<------------------[CID:3, PID:5][ACK, PID:6]--------------------|

| |

|---------[CID:3, PID:7][DATA, SID:5, OFF:3000, LEN:1000]-------->|

|---------[CID:3, PID:8][DATA, SID:5, OFF:4000, LEN:177]--------->|

| [DATA, SID:5, OFF:4178, LEN:0] |

| |

|<------------------[CID:3, PID:6][ACK, PID:8]--------------------|

| |

v v

7.3. Multiple Transfers

Multiple transfers can be executed in parallel by using different streams. The following sequence

diagram shows how a client and server exchange two files:

Initially, the server has a file called "readme.md" and the client has a file called "out.log". The

client reads the file from the server and concurrently also writes the other file to the server, so

that in the end both systems have both files.

Figure 27: Sequence diagram for a parallel file read and write

Client Server

| |

|----[CID:3, PID:4][READ, SID:5, OFF:0, LEN:0, PATH:readme.md]--->|

| |

|<--------[CID:3, PID:7][DATA, SID:5, OFF:1000, LEN:1000]---------|

| [ACK, PID:4] |

|<--------[CID:3, PID:8][DATA, SID:5, OFF:2000, LEN:1000]---------|

| |

|----[CID:3, PID:5][WRITE, SID:8, OFF:0, LEN:0, PATH:out.log]---->|

| [DATA, SID:8, OFF:0, LEN:1000] |

|---------[CID:3, PID:6][DATA, SID:5, OFF:1000, LEN:500]--------->|

| [DATA, SID:5, OFF:1500, LEN:0] |

| |

|<--------[CID:3, PID:9][DATA, SID:5, OFF:3000, LEN:177]----------|

| [DATA, SID:5, OFF:3177, LEN:0][ACK, PID:6] |

| |

|-------------------[CID:3, PID:7][ACK, PID:9]------------------->|

| |

v v

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 21

7.4. Recovery

As mentioned before, RFT does not have any explicit connection recovery mechanism. Offset and

length fields on Read- and WriteFrames however allow the client to resume partially completed

transfers in a new connection.

The following examples show how such a resumption of both a read and write could be

performed. In both cases we assume that the file transferred is called "example.txt" and 4000

bytes long.

7.4.1. Read Recovery

In this case the client has already read the first 2000 bytes of the file before the connection is lost.

For the second read command the client makes use of the offset and length fields to resume the

transfer, and the optional checksum field to ensure the already read portion is still the same:

The server will validate the checksum upon receiving the ReadFrame and continue reading the

file from the offset provided if it matches. Otherwise it will send an ErrorFrame with a message

"Checksum mismatch".

Figure 28: Sequence diagram for an example file read resumption after a client-side connection

failure

Client Server

| |

|---[CID:0, PID:1][READ, SID:1, OFF:0, LEN:0, PATH:example.txt]-->|

| |

|<---[CID:1, PID:1][ACK, PID:1][DATA, SID:1, OFF:0, LEN:1000]-----|

|<--------[CID:3, PID:2][DATA, SID:5, OFF:1000, LEN:1000]---------|

X client looses connection |

 X----[CID:3, PID:3][DATA, SID:5, OFF:2000, LEN:1000]---------|

| timeout X

| |

|--[CID:0, PID:1]-->|

| [READ, SID:1, OFF:2000, LEN:0, CRC: 0x1234, PATH:example.txt] |

| |

|<--[CID:3, PID:1][ACK, PID:1][DATA, SID:1, OFF:2000, LEN:1000]---|

|<--------[CID:3, PID:2][DATA, SID:1, OFF:3000, LEN:1000]---------|

| [DATA, SID:5, OFF:4000, LEN:0] |

| |

|-------------------[CID:3, PID:2][ACK, PID:2]------------------->|

| |

v v

7.4.2. Write Recovery

In this case the server is assumed to have already received and acknowledged the first 3000 bytes

of the file before the connection was lost. The client then simply uses the offset field to resume

the transfer from there:

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 22

Note that in contrast to the read case the protocol currently offers no mechanism on the

WriteFrame to ensure the file has not changed on the server side nor would a ChecksumFrame

completely eliminate this possibility.

Figure 29: Sequence diagram for an example file write resumption after a client-side connection

failure

Client Server

| |

|--[CID:0, PID:1][WRITE, SID:1, OFF:0, LEN:0, PATH:example.txt]-->|

| [DATA, SID:1, OFF:0, LEN:1000] |

| |

|<------------------[CID:1, PID:1][ACK, PID:1]--------------------|

| |

|---------[CID:1, PID:2][DATA, SID:1, OFF:1000, LEN:1000]-------->|

|---------[CID:1, PID:3][DATA, SID:1, OFF:2000, LEN:1000]-------->|

| |

|<------------------[CID:1, PID:2][ACK, PID:3]--------------------|

| |

|---------[CID:1, PID:4][DATA, SID:1, OFF:4000, LEN:1000]-------->|

X client looses connection |

 X---------------[CID:1, PID:1][ACK, PID:4]--------------------|

| timeout X

| |

|----------[CID:0, PID:1]-->|

| [WRITE, SID:1, OFF:3000, LEN:0, PATH:example.txt] |

| [DATA, SID:1, OFF:3000, LEN:1000] |

| |

|<------------------[CID:1, PID:1][ACK, PID:1]--------------------|

| |

v v

8. Further Commands

While RFT is primarily designed for file transfers, many use cases require additional operations,

therefore RFT has three additional commands: Checksum, Stat, and List, all discussed in the

following.

8.1. Checksum

The ChecksumFrame initiates the computation of the SHA-256 checksum of a file on

the server side:

[RFC6234]

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 23

The server responds with an AnswerFrame containing the SHA-256 checksum of the entire file:

The following sequence diagram shows the process of a checksum computation:

Note that in case of a larger file the server send empty packets to keep the connection alive

in absence of other traffic while the checksum is computed.

Figure 30: Checksum frame wire format

ChecksumFrame (24 + len(Path)) {

 U8 TypeId = 9,

 U16 StreamId,

 String Path,

}

Figure 31: Answer frame for checksum command wire format

AnswerFrame (24 + len(Payload)) {

 U8 TypeId = 4,

 U16 StreamId,

 Bytes Payload = {

 U8[32] Checksum,

 }

}

Figure 32: Sequence diagram for an example checksum computation

Client Server

| |

|----------[CID:1, PID:1][CHK, SID:1, PATH:big-file.img]--------->|

| |

|<------------------[CID:1, PID:1][ACK, PID:1]--------------------|

| |

. .

. other or keep-alive traffic while server is computing .

. .

| |

|<-----------[CID:1, PID:2+X][ANSW, SID:1, SHA:0x1234]------------|

| |

|-----------------[CID:1, PID:2+Y][ACK, PID:2+X]----------------->|

| |

v v

MAY

8.2. Stat

The StatFrame issues a request for file metadata:

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 24

The server responds with an AnswerFrame holding said metadata:

The file type is encoded in the first byte as follows:

File Type Value File Type

0 - reserved -

1 Regular file

2 Directory

3 Symbolic link

4 Block device

5 Character device

6 FIFO

7 Socket

8 to 256 - reserved -

Table 2: File type definitions.

The file permissions follow Linux conventions:

Figure 33: Stat frame wire format

StatFrame (24 + len(Path)) {

 U8 TypeId = 10,

 U16 StreamId,

 String Path,

}

Figure 34: Answer frame for checksum command wire format

AnswerFrame (24 + len(Payload)) {

 U8 TypeId = 4,

 U16 StreamId,

 Bytes Payload = {

 U4 FileType,

 U12 Permissions,

 U64 FileSize,

 U64 CreatedAt,

 U64 ModifiedAt,

 U64 AccessedAt,

 }

}

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 25

Permission Bit Permission

1 Set User ID

2 Set Group ID

3 Sticky Bit

4 Owner Read

5 Owner Write

6 Owner Execute

7 Group Read

8 Group Write

9 Group Execute

10 Other Read

11 Other Write

12 Other Execute

Table 3: Permission bit definitions.

The file size is the number of bytes in the file, while the timestamps are 64-bit UNIX timestamps.

The following sequence diagram shows the process of a stat operation:

Figure 35: Sequence diagram for an example checksum computation

Client Server

| |

|---------[CID:1, PID:1][STAT, SID:1, PATH:some-file.txt]-------->|

| |

|<-------[CID:1, PID:1][ACK, PID:1][ANSW, SID:1, METADATA]--------|

| |

|-------------------[CID:1, PID:2][ACK, PID:1]------------------->|

| |

v v

8.3. List

The ListFrame requests the list of entries in a directory:

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 26

Similar to the ReadFrame the server responds with sequence of DataFrames each containing

DirectoryEntries:

Each line of the payload contains the file type in the first byte, followed by the file name up to the

line terminator:

The following sequence diagram shows the process of a list operation:

Figure 36: List frame wire format

ListFrame (24 + len(Path)) {

 U8 TypeId = 11,

 U16 StreamId,

 String Path,

}

Figure 37: Wire format of data frame for list command response

DataFrame (72 + len(Payload)) {

 U8 TypeId = 6,

 U16 StreamId,

 U48 Offset,

 Bytes Payload = {

 DirectoryEntry[n] Entries,

 }

}

Figure 38: Directory entry wire format

DirectoryEntry (72 + len(Payload)) {

 U8 FileType,

 Char[m] Name,

 Char Separator = '\n',

}

Figure 39: Sequence diagram for an example checksum computation

Client Server

| |

|---------[CID:1, PID:5][LIST, SID:1, PATH:/home/admin/]--------->|

| |

|<---[CID:3, PID:10][ACK, PID:4][DATA, SID:5, OFF:0, LEN:1000]----|

|<--------[CID:3, PID:11][DATA, SID:5, OFF:1000, LEN:1000]--------|

|<--------[CID:3, PID:12][DATA, SID:5, OFF:2000, LEN:1000]--------|

| |

|-------------------[CID:3, PID:6][ACK, PID:12]------------------>|

| |

v v

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 27

9. Wire Format

This section summarizes the wire format of the protocol.

9.1. Numbers

RFT encodes numbers in little endian format to make implementation easier on most platforms.

9.2. Arrays

Array types have a variable size and are prefixed with a 2-byte length field, sufficient for all

practical purposes of RFT which is designed to avoid IP fragmentation.

9.2.1. Bytes

The Bytes type is used for arbitrary binary data like file chunks:

Figure 40: Bytes wire format

Bytes (2 + Length) {

 U16 Length,

 U8[Length] Buffer,

}

9.2.2. String

The String type is a sequence of UTF-8 encoded characters, used for message fields:

Figure 41: String wire format

String (2 + Length) {

 U16 Length,

 Char[Length] Buffer,

}

9.2.3. Path

The Path type is technically equivalent to the String type, but is specifically intended for file

paths:

Figure 42: Path wire format

Path (2 + Length) {

 U16 Length,

 Char[Length] Buffer,

}

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 28

9.3. Packet Format {#packet format}

The packet is the top-level structure of the protocol and consists of a header and an array of

frames:

The header contains the version, connection ID, packet ID, and a partial CRC32 checksum:

Figure 43: Packet wire format

Packet (len(Header) + len(Frames)) {

 PacketHeader Header,

 Array[Frame] Frames,

}

Figure 44: Packet header wire format

PacketHeader (96) {

 U8 Version = 1,

 U32 ConnectionId,

 U32 PacketId,

 U24 PacketChecksum,

}

9.4. Frame Format

Frames come in different types identified by a type ID:

Frame Type Value Frame Type

0 Acknowledgement Frame

1 Exit Frame

2 Connection ID Change Frame

3 Flow Control Frame

4 Answer Frame

5 Error Frame

6 Data Frame

7 Read Frame

8 Write Frame

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 29

Frame Type Value Frame Type

9 Checksum Frame

10 Stat Frame

11 List Frame

Table 4: Frame type definitions.

9.4.1. Ack Frame

The AckFrame contains the packet ID to be acknowledged cumulatively:

Figure 45: Acknowledgement frame wire format

AckFrame (40) {

 U8 TypeId = 0,

 U32 PacketId,

}

9.4.2. Exit Frame

The ExitFrame terminates the connection and has no further fields:

Figure 46: Exit frame wire format

ExitFrame (8) {

 U8 TypeId = 1,

}

9.4.3. Connection ID Change Frame

The ConnectionIdChangeFrame contains the old and new connection ID for negotiation:

Figure 47: Connection ID Change frame wire format

ConnIdChange (72) {

 U8 TypeId = 2,

 U32 OldConnId,

 U32 NewConnId,

}

9.4.4. Flow Control Frame

The FlowControl frame contains the new flow window size:

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 30

Figure 48: Flow control frame wire format

FlowControl (40) {

 U8 TypeId = 3,

 U32 WindowSize,

}

9.4.5. Answer Frame

The AnswerFrame responds to the command on the same stream with Bytes payload of

command-specific structure, which is described in more detail .above (Section 8)

Figure 49: Answer frame wire format

AnswerFrame (24 + len(Payload)) {

 U8 TypeId = 4,

 U16 StreamId,

 Bytes Payload,

}

9.4.6. Error Frame

The ErrorFrame returns an error message on the same stream:

Figure 50: Error frame wire format

ErrorFrame (24 + len(Message)) {

 U8 TypeId = 5,

 U16 StreamId,

 String Message,

}

9.4.7. Data Frame

The DataFrame carries a chunk of the transferred file at the given offset.

Note that they are also used to transmit the response to a list command, see .

Figure 51: Data frame wire format

DataFrame (72 + len(Payload)) {

 U8 TypeId = 6,

 U16 StreamId,

 U48 Offset,

 Bytes Payload,

}

above (Section 8.3)

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 31

9.4.8. Read Frame

The ReadFrame initiates a file read operation and is described in detail .above (Section 7.1)

Figure 52: Read frame wire format

ReadFrame (160 + len(Path)) {

 U8 TypeId = 7,

 U16 StreamId,

 U7 Reserved = 0,

 Bool ValidateChecksum,

 U48 Offset,

 U48 Length,

 U32 Checksum,

 String Path,

}

9.4.9. Write Frame

The WriteFrame initiates a file write operation and is described in detail .above (Section 7.2)

Figure 53: Write frame wire format

WriteFrame (120 + len(Path)) {

 U8 TypeId = 8,

 U16 StreamId,

 U48 Offset,

 U48 Length,

 String Path,

}

9.4.10. Checksum Frame

The ChecksumFrame initiates a checksum computation for the given file, and is described in

detail .above (Section 8)

Figure 54: Checksum frame wire format

ChecksumFrame (24 + len(Path)) {

 U8 TypeId = 9,

 U16 StreamId,

 String Path,

}

9.4.11. Stat Frame

The StatFrame initiates a stat operation for the given file, and is described in detail

.

above

(Section 8)

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 32

Figure 55: Stat frame wire format

StatFrame (24 + len(Path)) {

 U8 TypeId = 10,

 U16 StreamId,

 String Path,

}

9.4.12. List Frame

The ListFrame initiates a list operation for the given directory, and is described in detail

.

above

(Section 8)

Figure 56: List frame wire format

ListFrame (24 + len(Path)) {

 U8 TypeId = 11,

 U16 StreamId,

 String Path,

}

[RFC0768]

[RFC9000]

[RFC3629]

[RFC3385]

[RFC6234]

[RFC2119]

10. Normative References

, , , , ,

August 1980, .

 and ,

, , , May 2021,

.

, , , ,

, November 2003, .

, , , and ,

, , , September 2002,

.

 and ,

, , , May 2011,

.

, , ,

, , March 1997,

.

Postel, J. "User Datagram Protocol" STD 6 RFC 768 DOI 10.17487/RFC0768

<https://www.rfc-editor.org/rfc/rfc768>

Iyengar, J., Ed. M. Thomson, Ed. "QUIC: A UDP-Based Multiplexed and

Secure Transport" RFC 9000 DOI 10.17487/RFC9000 <https://

www.rfc-editor.org/rfc/rfc9000>

Yergeau, F. "UTF-8, a transformation format of ISO 10646" STD 63 RFC 3629

DOI 10.17487/RFC3629 <https://www.rfc-editor.org/rfc/rfc3629>

Sheinwald, D. Satran, J. Thaler, P. V. Cavanna "Internet Protocol Small

Computer System Interface (iSCSI) Cyclic Redundancy Check (CRC)/Checksum

Considerations" RFC 3385 DOI 10.17487/RFC3385 <https://

www.rfc-editor.org/rfc/rfc3385>

Eastlake 3rd, D. T. Hansen "US Secure Hash Algorithms (SHA and SHA-

based HMAC and HKDF)" RFC 6234 DOI 10.17487/RFC6234 <https://

www.rfc-editor.org/rfc/rfc6234>

Bradner, S. "Key words for use in RFCs to Indicate Requirement Levels" BCP 14

RFC 2119 DOI 10.17487/RFC2119 <https://www.rfc-editor.org/rfc/

rfc2119>

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 33

https://www.rfc-editor.org/rfc/rfc768
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc9000
https://www.rfc-editor.org/rfc/rfc3629
https://www.rfc-editor.org/rfc/rfc3385
https://www.rfc-editor.org/rfc/rfc3385
https://www.rfc-editor.org/rfc/rfc6234
https://www.rfc-editor.org/rfc/rfc6234
https://www.rfc-editor.org/rfc/rfc2119
https://www.rfc-editor.org/rfc/rfc2119

[RFC8174] , ,

, , , May 2017,

.

Leiba, B. "Ambiguity of Uppercase vs Lowercase in RFC 2119 Key Words" BCP

14 RFC 8174 DOI 10.17487/RFC8174 <https://www.rfc-editor.org/rfc/

rfc8174>

Authors' Addresses

Sandro-Alessio Gierens ()editor

Technical University of Munich

Boltzmannstraße 3

 85748 Garching

Germany

 sandro.gierens@tum.de Email:

Niklas Stangl ()editor

Technical University of Munich

Boltzmannstraße 3

 85748 Garching

Germany

 niklas.stangl@tum.de Email:

Johannes Pfannschmidt ()editor

Technical University of Munich

Boltzmannstraße 3

 85748 Garching

Germany

 johannes.pfannschmidt@cs.tum.edu Email:

Désirée Rentz ()editor

Technical University of Munich

Boltzmannstraße 3

 85748 Garching

Germany

 desiree.rentz@tum.de Email:

Yusuf Erdem Nacar ()editor

Technical University of Munich

Boltzmannstraße 3

 85748 Garching

Germany

 yusuferdem.nacar@tum.de Email:

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 34

https://www.rfc-editor.org/rfc/rfc8174
https://www.rfc-editor.org/rfc/rfc8174
mailto:sandro.gierens@tum.de
mailto:niklas.stangl@tum.de
mailto:johannes.pfannschmidt@cs.tum.edu
mailto:desiree.rentz@tum.de
mailto:yusuferdem.nacar@tum.de

Isak Gustafsson ()editor

Technical University of Munich

Boltzmannstraße 3

 85748 Garching

Germany

 go68wuy@mytum.de Email:

Internet-Draft RFT November 2024

Gierens, et al. Expires 17 May 2025 Page 35

mailto:go68wuy@mytum.de

	Robust File Transfer
	Abstract
	Status of This Memo
	Copyright Notice
	Table of Contents
	1. Introduction
	1.1. Keywords
	1.2. Terms
	1.3. Notation

	2. Overview
	3. Packet
	3.1. Version
	3.2. Connection ID
	3.3. Packet ID
	3.4. Packet Checksum
	3.5. Payload

	4. Communication Structure
	4.1. Frames
	4.2. Streams

	5. Connection
	5.1. Establishment
	5.1.1. Connection ID Negotiation
	5.1.2. Unknown Connection ID

	5.2. Termination
	5.2.1. Tear Down
	5.2.2. Timeout

	5.3. Migration
	5.4. Resumption

	6. Robustness
	6.1. In-Order Delivery
	6.2. Acknowledgements
	6.3. Retransmission
	6.3.1. Retransmission Timeout
	6.3.2. Fast Retransmission

	6.4. Congestion Control
	6.4.1. Slow Start
	6.4.2. Congestion Avoidance

	6.5. Flow Control
	6.6. Checksumming

	7. File Transfer
	7.1. Read
	7.2. Write
	7.3. Multiple Transfers
	7.4. Recovery
	7.4.1. Read Recovery
	7.4.2. Write Recovery

	8. Further Commands
	8.1. Checksum
	8.2. Stat
	8.3. List

	9. Wire Format
	9.1. Numbers
	9.2. Arrays
	9.2.1. Bytes
	9.2.2. String
	9.2.3. Path

	9.3. Packet Format {#packet format}
	9.4. Frame Format
	9.4.1. Ack Frame
	9.4.2. Exit Frame
	9.4.3. Connection ID Change Frame
	9.4.4. Flow Control Frame
	9.4.5. Answer Frame
	9.4.6. Error Frame
	9.4.7. Data Frame
	9.4.8. Read Frame
	9.4.9. Write Frame
	9.4.10. Checksum Frame
	9.4.11. Stat Frame
	9.4.12. List Frame

	10. Normative References
	Authors' Addresses

